Deep Learning Paper

Paper

Image Classification

ALexNetImageNet Classification with Deep Convolutional Neural Networks (NIPS 2012)

ZFNetVisualizing and Understanding Convolutional Networks (ECCV 2014)

GoogLeNetGoing Deeper with Convolutions (CVPR 2015)

Network In Network $1\times1$卷积

Provable Bounds for Learning Some Deep Representations 用稀疏、分散的网络取代以前庞大密集臃肿的网络

InceptionV2Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (ICML 2015)

InceptionV3Rethinking the Inception Architecture for Computer Vision (CVPR 2016)

InceptionV4Inception-ResNet and the Impact of Residual Connections on Learning (AAAI 2017)

XceptionXception: Deep Learning with Depthwise Separable Convolutions (CVPR 2017)

VGGNetVery Deep Convolutional Networks for Large-Scale Visual Recognition (ICLR 2015)

ResNetDeep Residual Learning for Image Recognition(CVPR 2016)

ResNeXt:ggregated Residual Transformations for Deep Neural Networks-2017

DenseNet:Densely Connected Convolutional Networks

Object Detection

Dense Prediction (one-stage)

anchor based

SSDSSD: Single Shot MultiBox Detector (ECCV 2016)

YOLOYou Only Look Once:Unified, Real-Time Object Detection (CVPR 2016)

YOLOV2YOLO9000: Better, Faster, Stronger (CVPR 2017)

YOLOV3YOLOv3: An Incremental Improvement (CVPR 2018)

YOLOV4YOLOv4: Optimal Speed and Accuracy of Object Detection (CVPR 2020)

Scaled-YOLOv4Scaled-YOLOv4: Scaling Cross Stage Partial Network (CVPR 2021)

IOU_Loss(2016)->GIOU_Loss(2019)->DIOU_Loss(2020)->CIOU_Loss(2020)

YOLOXYOLOX: Exceeding YOLO Series in 2021

YOLOV5

Alpha-IoU:A Family of Power Intersection over Union Losses for Bounding Box Regression (NIPS 2021)

RetinaNetFocal Loss for Dense Object Detection (ICCV 2017)

anchor free

CornerNet:CornerNet: Detecting Objects as Paired Keypoints](https://arxiv.org/abs/1808.01244) (ECCV 2018)

CornerNet-Lite: Efficient Keypoint Based Object Detection (BMVC 2020)

CenterNetCenterNet: Keypoint Triplets for Object Detection (ICCV 2019)

MatrixNet:Matrix Nets: A New Deep Architecture for Object Detection(ICCV 2019)

FCOSFCOS: Fully Convolutional One-Stage Object Detection (ICCV 2019)

Sparse Prediction (two-stage)

anchor based

R-CNN:[Rich feature hierarchies for accurate object detection and semantic segmentation (CVPR 2014)

Selective Search for Object Recognition(IJCV 2012)

[Path-aggregation blocks-FPN](####Path-aggregation blocks)

[Additional blocks-SPP](####Additional blocks)

Fast R-CNNFast R-CNN (ICCV 2015)

Faster R-CNNFaster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (NIPS 2015)

R-FCNR-FCN: Object Detection via Region-based Fully Convolutional Networks (NIPS 2016)

Mask R-CNNMask R-CNN (ICCV 2017)

Libra R-CNN: Libra R-CNN: Towards Balanced Learning for Object Detection (CVPR 2019)

Sparse R-CNNSparse R-CNN: End-to-End Object Detection with Learnable Proposals (CVPR 2021)

anchor free

RepPointsRepPoints: Point Set Representation for Object Detection (ICCV 2019)

Neck

Additional blocks

SPPSpatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition (TPAMI 2015)

ASPPDeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (TPAMI 2017)

RFBReceptive Field Block Net for Accurate and Fast Object Detection (ECCV 2018)

SAMCBAM: Convolutional Block Attention Module (ECCV 2018)

Path-aggregation blocks

FPNFeature Pyramid Networks for Object Detection (CVPR 2017)

PANPath Aggregation Network for Instance Segmentation (CVPR 2018)

NAS-FPNNAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection (CVPR 2019)

BiFPNEfficientDet: Scalable and Efficient Object Detection (CVPR 2020)

ASFFLearning Spatial Fusion for Single-Shot Object Detection (2019)

SFAMM2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network (AAAI 2019)

Image Segmentation

轻量化CNN

SqueezeNetSqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (2016)

SqueezeNext: Hardware-Aware Neural Network Design (2018)

MobileNetMobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (2017)

MobileNetV2MobileNetV2: Inverted Residuals and Linear Bottlenecks (2018)

MobileNetV3Searching for MobileNetV3 (2019)

MnasNet: Platform-Aware Neural Architecture Search for Mobile (CVPR 2019)

ShuffleNetShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (2017)

ShuffleNetV2ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design (2018)

PeleeNetPelee: A Real-Time Object Detection System on Mobile Devices (2018)

Shift-AShift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions (2018)

GhostNetGhostNet: More Features from Cheap Operations (2020)

GAN

GAN:Generative Adversarial Networks

如何读论文

李沐

第一遍:关注标题和摘要;结论。实验部分和方法的图表;看看适不适合。海选

第二遍:全过一遍,图表、流程图具体到每个部分;相关文献圈出来。精选

第三遍:知道每句话,每段话在说什么,换位思考。脑补过程。重点研读

0%